iv : m at h - ph / 0 51 10 78 v 2 2 2 Ja n 20 07 On the Two Spectra Inverse Problem for Semi - Infinite Jacobi Matrices ∗ †

نویسنده

  • Luis O. Silva
چکیده

We present results on the unique reconstruction of a semi-infinite Jacobi operator from the spectra of the operator with two different boundary conditions. This is the discrete analogue of the Borg-Marchenko theorem for Schrödinger operators on the half-line. Furthermore, we give necessary and sufficient conditions for two real sequences to be the spectra of a Jacobi operator with different boundary conditions. Mathematics Subject Classification(2000): 47B36, 49N45,81Q10,47A75, 47B37, 47B39. Research partially supported by Universidad Nacional Autónoma de México under Project PAPIITDGAPA IN 105799, and by CONACYT under Project P42553F. Fellow Sistema Nacional de Investigadores.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

X iv : m at h - ph / 0 51 10 78 v 1 2 5 N ov 2 00 5 On the Two Spectra Inverse Problem for Semi - Infinite Jacobi Matrices ∗ †

We present results on the unique reconstruction of a semi-infinite Jacobi operator from the spectra of the operator with two different boundary conditions. This is the discrete analogue of the Borg-Marchenko theorem for Schrödinger operators in the half-line. Furthermore, we give necessary and sufficient conditions for two real sequences to be the spectra of a Jacobi operator with different bou...

متن کامل

ar X iv : m at h - ph / 0 50 90 44 v 2 1 1 Ja n 20 06 RANDOM POLYNOMIALS , RANDOM MATRICES AND L - FUNCTIONS

We show that the Circular Orthogonal Ensemble of random matrices arises naturally from a family of random polynomials. This sheds light on the appearance of random matrix statistics in the zeros of the Riemann zeta-function.

متن کامل

M-functions and Inverse Spectral Analysis for Finite and Semi-infinite Jacobi Matrices

We study inverse spectral analysis for finite and semi-infinite Jacobi matrices H. Our results include a new proof of the central result of the inverse theory (that the spectral measure determines H). We prove an extension of Hochstadt’s theorem (who proved the result in the case n = N) that n eigenvalues of an N ×N Jacobi matrix, H, can replace the first n matrix elements in determining H uniq...

متن کامل

The Two-Spectra Inverse Problem for Semi-Infinite Jacobi Matrices in The Limit-Circle Case∗†‡

We present a technique for reconstructing a semi-infinite Jacobi operator in the limit circle case from the spectra of two different self-adjoint extensions. Moreover, we give necessary and sufficient conditions for two real sequences to be the spectra of two different self-adjoint extensions of a Jacobi operator in the limit circle case. ∗Mathematics Subject Classification(2000): 47B36, 49N45,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007